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Introduction

Plotless (distance) methods have received considerable
attention during the past 20 years for the estimation of
density for a population of stationary objects. Such plotless
density estimators (PDE’s) have usually been developed
under the assumption that the population of objects is
randomly (Poisson) distributed throughout the area to be
measured. However, objects in nature seldom follow a
random spatial distribution, and estimators based on this
assumption usually do not perform well when the assumption
does not hold (e.g., Diggle 1975).

Patil et al. (1979) developed a nonparametric PDE, based on
fundamental theoretical results, to overcome the lack of
robustness of most PDE’s over different spatial pattems. In
this report, we consider a modification to the nonparametric
PDE given by Patil et al. (henceforth referred to as the PBK
estimator).

To apply the PBK estimator, n points are randomly sampled
in the area of interest. The distance, R, to the closest
individual of interest is measured from each point. For each
sample point, the search area to locate the closest individual
is calculated as U = & R2. The n search areas are ordered as
U,, where (i) indicates the i" order statistic. The PBK estima-
tor, as indicated by Patil et al. (1979), is a special case of an
estimation procedure developed by Loftsgaarden and
Quesenberry (1965) and is written as

#0) = (k(nYn)Ug .y (1)

where f(O) is the estimated density, [ ] indicates the greatest
integer function, and k(n) is a sequence of real numbers such
that

limk(n)=e - and limk(n)/n = 0. @)

N—> oo N—> oo

Patil et al. (1979) recommended that the form of the sequence
be defined as

k(n) =n®, where p < 1. (3)

They specifically encouraged the use of an estimator based
on the above sequence with p = 0.5. In their more recent
article (Patil et al. 1982), they indicated that p = 2/3 is
asymptotically optimal.

A modification to the PBK estimator is apparent from equa-
tion (1). Rather than selecting the [k(n)]™ order statistic from
among the ordered U’s, we consider calculating the f(0) in
equation (1) by linear interpolation between the ordered

U, and U whereisk(n)<i+ 1. intuitively, the application
of interpolation to the estimation procedure would be of
greatest benefit with small sample sizes, where the magni-
tude of the differences between consecutive U's tends to be
larger.

Simulation Study

To examine the effect of interpolation in the small sample
size situation, we performed a Monte Carlo simulation study
with six populations of objects, each with a different spatial
pattern. We identify the six spatial patterns for the simulated
populations as random, triangular, regular, aggregate, double
clumped, and field. The random pattern (also called Poisson
in recognition that the points are distributed as a two-
dimensional Poisson process) was simulated by generating
random x-y coordinates. The triangular pattem was gener-
ated so that the population members were located at the
vertices of a lattice of equilateral triangles. Because each
object is equidistant from its six neighbors, this distribution is
also called a hexagonal distribution. The regular spatial
pattem was generated by dividing the area into a grid of
rectangles, the same number as individuals to be in the
population. The population members were then situated by
randomly locating one individual in each rectangle. For the
aggregate pattemn, the centers of clumps were randomly
located. In addition to the clump center point, “offspring” for
the clumps were located about the center (parent) point,
using coordinates randomly generated from the standard
bivanate normal distribution. This procedure tends to
concentrate the members of the clump close to the center
point. The aggregate pattemns approximate many naturally
occurring biological population pattems, including rat damage
pattemns in sugarcane. The pattem we label as double
clumped is a second order aggregation that was generated in
a similar fashion to the aggregate pattem. The difference is
that for the double clumped pattem, the individuals in the
clumps of the aggregate pattem are used for center points
(parents) for subclumps of two individuals. The two individu-
als of the subclumps include the parent plus one other point
(offspring) randomly generated from the standard bivariate
normal distribution. The field population was provided by our
most immediate application for PDE's, estimating the density
of rat-damaged intemodes on cane stalks in sugarcane fields.
This spatial pattern was produced by locating and recording
each damaged intemode in a section of a cane field on the
island of Hawaii.

In this study, we did not consider truncation formulae for
restricted search areas. We also avoided edge effects by
rejecting sample points where the search area encountered
an edge prior to finding an object of interest. The true density
for each simulated distribution was approximately 20, -which
approximates densities from actual field data. The sample
size used in the simulations was also motivated from in-field
experience. Closest individual measurements for density
estimation are most efficient, relative to plot sampling, at
smaller sample sizes (Holgate 1964). Also, cane fields are
very arduous to sample, and personnel to do the sampling
are usually limited. Therefore, about 10 samples per field are
all that are taken. Thus, after the populations were gener-
ated, samples from 10 randomly placed points were selected
from each population. The distance from each random point
to the closest individual was measured, and the correspond-
ing search areas were calculated. From each data set of 10
distances, a density estimate was calculated.



To investigate the effects that interpolation and the value of p
have on the estimation procedure, we considered three
values of p: 0.5, 0.6, and 0.7. For each value of p, an
interpolated and an uninterpolated estimator were consid-
ered, resulting in six estimators (three pairs) for simulation.

We considered the use of real-world data in the simulation to
be vitally important if we were to potentially give managers of
sugarcane fields a sampling tool with which they could make
management decisions. However, incorporating the field
data in the simulations posed a minor dilemma as to what the
optimal simulation methods should be. We would have
preferred to generate a new population for each of the spatial
patterns at each iteration of the simulation. However, having
only one set of field data available precluded this. Also, the
tiangular pattern (with no randomness among the point
locations) would look the same each iteration, and the square
pattern would have only minor changes relative to the overali
pattern. Based on these considerations, our choice for
treating the six pattems in a consistent manner was to
generate each population once and then use a new set of
sampling points at each iteration. The sampling procedure
and density estimation were repeated 300 times for each

‘tern. The simulations were conducted in FORTRAN on a
- .<C 382/S with an MK-Il microfile CPU and disk drive.

Table 1—RRMSE's for the modifications to the PBK estima-
tor for sample size n=10 and 300 iterations in the simulation

Results

We compared the simulation results for the astimators by
examining their relative root mean square error (RRMSE). |
we let D equal the actual density and D=i (0), then the
(observed) RRMSE is calculated as

RRMSE = ((5£(D-D)1)D7* (4)

where | is the number of replications (iterations) in the
simulation.

The RRMSE results and the true densities from the simula-
tion are given in table 1. These results indicate that interpola-
tion consistently enhances the estimation procedure. Across
the six populations, the interpolated RRMSE is smaller
(generally much smaller) for each value of p than the
uninterpolated value in all but two instances, and in one of
these two instances the interpolated RRMSE is only 0.007
larger. However, we cannot explain the results for the other
instance, 0.6I for the random pattem, where the original
version outperforms the interpolated modification. Over all
values, the RRMSE is 23 percent smaller for the interpolated
estimators.

Based on equations (1) and (3), one would expect interpola-
tion to have the greatest effect when n® is slightly smaller than
an integer. If it is slightly larger than an integer, there would
be little effect. For example, 10°7 = 5.01. Using this value for
interpolation would not result in much improvement over the
greatest integer function results with {10°7] = 5. However, for
10°% and 10°¢, interpolation would be expected to have a
more dramatlc effect because 10°%=3.16 but [10°%] = 3 and
10°¢ = 3.98 but {10°¢] = 3. These expectations generally hold
true in the results given in table 1.

Estimator’

Spatial True

pattern density 0.5 0.51 0.6 0.61 0.7 0.71
Random 19.77 .99 .82 1.35 1.75 .64 .62
Triangular 19.72 1.03 .85 1.43 .75 .46 .46
Regular 18.77 1.15 .91 1.58 76 .54 .53
Aggregate 19.90 1.47 1.18 1.95 .96 .73 .72
Double clumped 21.84 1.08 .89 1.20 .86 .88 .88
r 21.53 1.20 .93 1.59 77 .69 .67

"“I” indicates the use of interpolation.



Discussion

In general, the small sample size situation is where PDE's
are most efficient for estimating density (see, for example,
Pollard 1971 and Holgate 1964) if the underlying assump-
tions are met. However, small sample sizes are not very
eftective for estimating percentiles. This problem with using
the PBK estimator for small sample sizes is recognized by
Patil et al. (1979) and Bythe (1982). Interpolation is one
means to reconcile the small sample size inefficiencies of the
PBK estimator with the general efficiency of PDE’s at small
sample sizes. The simulation results presented in the
previous section indicate that interpolation consistently
improves the estimation properties of the PBK estirnator
across a variety of spatial patterns where the assumptions for
many PDE's would not be met.
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